If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-45t=0
a = 1; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·1·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*1}=\frac{0}{2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*1}=\frac{90}{2} =45 $
| 29=x-72 | | -8x+6=8x-3 | | 9(2a+1=) | | 26÷r=2 | | 8z−7z=5−11 | | 4y-2-2y+2=y+3 | | (x+55)/2=6x | | 5x+55+50=180 | | 7(n-4)=56 | | (3x-11)/2=x | | 48=w2 | | x÷6-42=-6 | | -1/2(-2x-4)=3x | | (3x-9)/2=x | | y=2•0.25 | | 625=-6x+5 | | 1/2(x+35)=4x | | 10y=36+16 | | 2x+10°+x-30°=180 | | 9x-4x+8=x-8+16 | | 6-3/4;y=1/3 | | 50=3b+5 | | 48=9v-3v | | 8/y+6=38 | | b+10/16=1 | | -4=-2+x/2 | | -120=-9r-3 | | 2=3v+v | | 2x-1.3=x1.9 | | 63=6w+3 | | 4=m÷4 | | 2k+6=20 |